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The Hydro-Plant Unit Commitment & Scheduling
Problem

Find the optimal
scheduling of several
plants with multi-unit
pump-storage hydro
power station.
Short term.
Assumptions: forecast
electricity prices and
inflows, price-taker.
16,2 % of the total
energy produced
worldwide.

C. D’Ambrosio (CNRS&École Polytechnique) Math Models & Methods for Hydro UC CWM3EO, Budapest 2 / 44



Variables

Independent variables:
qjt = water flow in turbine j in period t (j ∈ J, t ∈ T ), with qj0 = Qj0;

st = spillage in period t (t ∈ T );
Dependent variables:

vt = water volume in the basin in period t (t ∈ T ), with v0 = V0;

pjt = power generated or consumed by turbine j in period t
(j ∈ J, t ∈ T );

where T = {1, . . . , t} := the set of time periods considered,
J = {1, . . . , n} := the set of turbine-pump units.

Plus auxiliary variables for modeling discontinuities, etc.
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Variables domain

For each period t , we have the three possible cases that can occur
relative to turbine-pump unit j :

if unit j is generating power→ qjt ≥ 0 and pjt ≥ 0 ;
if unit j is pumping water→ qjt ≤ 0 and pjt ≤ 0 ;
if unit j is not operating→ qjt = 0 and pjt = 0.

qjt ∈ [q−
jt

; q−jt ] ∪ {0} ∪ [q+
jt

; q+
jt ] (j ∈ J, t ∈ T ).

Also potential forbidden zones.

st ≥ 0 (t ∈ T );

v ≤ vt ≤ v (t ∈ T );
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Physical Constraints

Typically hard constraints:

Water flow balance equations

Respect allowed operational points: (dis-)continuous, discrete, turbine/pump
related

Forbid of simultaneous pump and turbine mode

Power production depending on water flow and head effect

Minimum number of periods to be spent in a status by the unit (minimum starting
up/down times)

spillage

...
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Strategic Constraints

Typically soft constraints:

Ramp up/down bound constraint

Irrigation requirement/Ecological flows/Water rights

Load balance equations constraints

Minimum release of water per period

Final reservoir level
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Objective Function(s)

Minimize the water consumption

Maximize the profit

Minimize the number of startups and shutdowns of generating units in the day

Minimize the cost of power generation loss and generating unit
start-up/shut-downs

Maximize the daily plants global efficiency

Minimize hydro-logic alteration/damage by inundation/the risk due to
overtopping/sum of the reservoir releases through the bottom outlet
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The challenges

Large-scale problem
Need to solve in short amount of time
Combinatorial aspects
Non linearities
Multiple (conflicting) objectives
etc!
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Dealing with nonlinearities
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Dealing with nonlinearities: Approximations

The power production: a highly non-linear function of the water flow
and either the water level or (equivalently) the water volume in the
reservoir, of the form:

pjt = ϕ(qjt , vt ) ∀j ∈ J, t ∈ T . (1)

MILP solvers more efficient than MINLP ones and handle
large-scale instances.
Trying to get rid of the non-linear functions→ “linearize” and use
MILP solvers!!!!
Piecewise linear approximation: Beale & Tomlin, 1970 (Special
Ordered Sets).

Focus on MINLP with non-linear objective function and linear
constraints .
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Starting simple: univariate function

Consider a function f (x) and construct its piecewise linear
approximation.

Divide the domain of f in n − 1 intervals of coordinates x1, . . . , xn.
Sample f at each point xi with i = 1, . . . ,n.
The piecewise linear approximation of f is given by the convex
combination of the samples.

r1 r2 r3 r4

(a)

r1 r2 r3 r4

(b)
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Function of 2 variables: Method 1

1 Simply fix the value of one of the 2 variables and obtain a
univariate function: f (x , ỹ).

2 Apply methods for approximating univariate functions (previous
slide).

The quality of the approximation depends on the function at hand.

Choose to fix the “less nonlinear” variable.
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Function of 2 variables: Method 2

In Conejo et al. (2002) the function f a = f (x , y) was approximated by
considering three prefixed water volumes, say ỹ1, ỹ2, ỹ3 and
interpolating, for each ỹ r , the resulting function

f a = f (x , ỹ r )

by piecewise linear approximation.

It can be generalized by approximating a prefixed number m of values of y .
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Function of 2 variables: Method 3

Consider a function f (x , y) and construct its piecewise linear
approximation.

Divide the domain of f in a (n − 1)× (m − 1) grid of coordinates
x1, . . . , xn, y1, . . . , ym.
Divide the rectangles in the (x , y)-space in triangles .
Sample f at each point (xi , yj) with i = 1, . . . ,n and j = 1, . . . ,m.
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Function of 2 variables: Method 3 (cont.d)

Any point (x̃ , ỹ)

belongs to one of the triangles;
can be written as a convex combination of its vertices with weights
αij ; and
the value of function f at (x̃ , ỹ) is approximated as

f a =
n∑

i=1

m∑
j=1

αij f (xi , yj).

1 triangle↔ 1 binary variable→ O(n ×m) binaries.
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Method 3: Standard Triangulation

Given a rectangle identified by the four points v1, v2, v3, v4 we can
divide it in 2 triangles in 2 different ways by selecting:

1 diagonal [v1, v4]; or
2 diagonal [v2, v3].

v1

v2

v3

v4

x

Non-linear f (x , y)→ 2 different f a for choice 1 and 2 !
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Method 3: Standard Triangulation

Diagonal [v1, v4]:

αv1 ≤ β[v1,v2,v4] + β[v1,v3,v4]

αv2 ≤ β[v1,v2,v4]

αv3 ≤ β[v1,v3,v4]

αv4 ≤ β[v1,v2,v4] + β[v1,v3,v4]

β[v1,v2,v4] + β[v1,v3,v4] = 1

Diagonal [v2, v3]:

αv1 ≤ β[v1,v2,v3]

αv2 ≤ β[v1,v2,v3] + β[v2,v3,v4]

αv3 ≤ β[v1,v2,v3] + β[v2,v3,v4]

αv4 ≤ β[v2,v3,v4]
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Method 4: Optimistic Approximation

with A. Lodi, S. Martello, R. Rovatti

v1

v2

v3

v4

x

(c) (d)

Observation is simple:

Why do we need to decide the triangle “offline”?

Let the point (x̃ , ỹ) be a convex combination of all the 4 vertices of the
rectangle and the MILP solver (optimistically) decide based on the
objective function!

αv ≤ β[v1,v2,v3,v4] ∀v ∈ {v1, v2, v3, v4}
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Method 4: Optimistic Approximation (cont.d)

Let the MILP (optimistically) decide based on the objective
function!

In each region:

f̌ (x) = min
ν∑

j=1

αj f (vj ) or f̂ (x) = max
ν∑

j=1

αj f (vj )

subject to

αj ≥ 0
ν∑

j=1

αj = 1

ν∑
j=1

αjx(vj ) = x

ν∑
j=1

αjy(vj ) = y

where ν is the number of vertices that characterize the region.
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Method 4: Optimistic Approximation Properties

Theorem

The approximations f̌ and f̂ are such that

f̌ (resp. f̂ ) is piecewise convex (resp. concave).

f̌ and f̂ are continuous.
if f is linear then f̌ = f̂ = f .
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Method 4: Optimistic Approximation Properties

Theorem

The approximations f̌ and f̂ are such that

∆r

(
f , f̌
)
≤ Dmax(r) and ∆r

(
f , f̂
)
≤ Dmax(r) (∀r ∈ R).

if f is convex (resp. concave) in any r ∈ R, then f̌ (resp. f̂ ) is the
best possible linear interpolation of the samples f (vj) in the sense
of ∆r (f , ·).

where
R is the collection of rectangles,
∆r (f ,g) = max(x ,y)∈r |f (x , y)− g(x , y)|, and

Dmax(r) is the maximum ∆r

(
f , f̃
)

among all the possible linear

interpolations f̃ .
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Standard vs Optimistic Approach: MILP size

Besides the nice properties, the optimistic approximation provides
huge advantages when modeled with a MILP.

Standard triangulation: 1 binary variable for each triangle
O(n ×m).
Optimistic approximation: 1 binary variable for each rectangle.
Note: Each axis treated separately, i.e.,
n binaries for the x axis, and
m binaries for the y axis. → O(n + m).
For example, 3 × 3 grid→ 6 vs 18 binaries
10 × 10 grid→ 20 vs 200 binaries!

C. D’Ambrosio (CNRS&École Polytechnique) Math Models & Methods for Hydro UC CWM3EO, Budapest 22 / 44



f a = f (x , y): MILP size

HROp-std UJ-std
m constr. 0-1 var. var. non-zero constr. 0-1 var. var. non-zero
10 5,544 3,528 20,999 130,867 18,816 34,104 51,575 229,483
20 8,904 6,888 74,759 493,747 69,216 134,904 202,775 925,003
30 12,264 10,248 162,119 1,091,827 153,216 302,904 454,775 2,090,923
40 15,624 13,608 283,079 1,925,107 270,816 538,104 807,575 3,727,243
50 18,984 16,968 437,639 2,993,587 422,016 840,504 1,261,175 5,833,963

For m =50:
Number of binary variables: 16,968 vs 840,504.
Number of constraints: 18,984 vs 422,016.
Number of non-zeros: 2,993,587 vs 5,833,963.
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f a = f (x , y): Solving the MILP

Single processor of an Intel Core2 CPU 6600, 2.40 GHz, 1.94 GB of
RAM under Linux.

Cplex 10.0.1, time limit of 300’, 600’, 1 hour. Maximize the profit

HROp-std UJ-std
time solution initial final CPU # solution initial final CPU #

m limit value %gap %gap time nodes value %gap %gap time nodes
10 300 31,576.30 1.28 — 9.61 658 31,576.30 1.49 0.22 T.L. 7,684

600 31,576.30 1.28 — 9.61 658 31,576.30 1.49 — 304.69 13,542
20 300 31,630.90 1.24 — 37.01 631 n/a n/a n/a T.L. 1,121

600 31,630.90 1.24 — 37.01 631 31,555.10 1.40 0.60 T.L. 3,699
3,600 31,630.90 1.24 — 37.01 631 31,582.00 1.29 0.41 T.L. 35,382

30 300 31,633.40 1.23 0.02 T.L. 5,057 n/a n/a n/a T.L. 411
600 31,633.40 1.23 — 320.28 5,356 n/a n/a n/a T.L. 1,285

3,600 31,633.40 1.23 — 320.28 5,356 31,475.10 1.79 0.84 T.L. 4,310
40 600 31,639.20 1.20 — 265.00 929 n/a n/a n/a T.L. 747

3,600 31,639.20 1.20 — 265.00 929 n/a n/a n/a T.L. 3,284
50 3,600 31,639.50 1.26 — 697.48 1,473 n/a n/a n/a T.L. 1,697

Number of solved instances: 5 vs 1.
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f a = f (x , y): Going Logarithmic

Vielma & Nemhauser, 2011 : MILP model for the standard
triangulations with a logarithmic number of variables (binary tree
structure).Doable also for the Optimistic approximation.

HROp-std UJ-log
m constr. 0-1 var. var. non-zero constr. 0-1 var. var. non-zero
9 5,208 3,192 17,471 107,515 4,368 1,848 16,127 142,963

17 7,896 5,880 55,103 360,187 5,040 2,184 51,407 578,419
33 13,272 11,256 194,879 1,317,115 5,712 2,520 186,143 2,501,683
65 24,024 22,008 732,479 5,037,307 6,384 2,856 713,327 11,056,243

HROp-std UJ-log
solution % CPU # solution % CPU #

m value error time nodes value error time nodes
9 31,565.40 -2.34 14.71 1,507 31,538.70 -2.26 18.69 1,723

17 31,577.20 -2.31 755.96 36,507 31,577.20 -2.31 20.84 369
33 31,626.20 -2.35 277.13 2,567 31,624.10 -2.35 231.99 1,531
65 31,640.30 -2.33 2,003.18 2,088 31,640.30 -2.34 530.56 435
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f a = f (x , y): Going Logarithmic (cont.d)

HROp-log UJ-log
m constr. 0-1 var. var. non-zero constr. 0-1 var. var. non-zero
9 3,864 1,512 15,791 134,395 4,368 1,848 16,127 142,963

17 4,536 1,848 51,071 552,043 5,040 2,184 51,407 578,419
33 5,208 2,184 185,807 2,407,771 5,712 2,520 186,143 2,501,683
65 5,880 2,520 712,991 10,698,571 6,384 2,856 713,327 11,056,243

HROp-log UJ-log
solution initial final CPU # solution initial final CPU #

m value %gap %gap time nodes value %gap %gap time nodes
9 31,565.40 1.13 — 14.21 1,439 31,538.70 1.14 — 18.69 1,723

17 31,577.20 1.35 — 23.88 653 31,577.20 1.35 — 20.84 369
33 31,626.20 1.24 — 99.90 540 31,624.10 1.25 — 231.99 1,531
65 31,640.30 1.20 — 593.73 599 31,640.30 1.20 — 530.56 435

Why? log(nm) = log(n) + log(m)
Advantages of the optimistic approximation: MILP model of limited size
(tractable ) and easy to implement .
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Multiple Objectives
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Multiple Objectives: general math model

min fk (x) ∀k ∈ {1, . . . ,p}
gi(x) ≤ 0 ∀i ∈ {1, . . . ,m}

xj ∈ Z ∀j ∈ {1, . . . , r}
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Multiple Objectives: standard methods

Weighted Sum method:

min
p∑

k=1

λk fk (x)

gi(x) ≤ 0 ∀i ∈ {1, . . . ,m}
xj ∈ Z ∀j ∈ {1, . . . , r}

with 0 ≤ λk ≤ 1 ∀k ∈ {1, . . . ,p} and
∑p

k=1 λk = 1.
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Multiple Objectives: standard methods

ε-constraint method:

min fk̄ (x)

gi(x) ≤ 0 ∀i ∈ {1, . . . ,m}
fk (x) ≤ f̃k ∀ki ∈ {1, . . . ,p}, k 6= k̄

xj ∈ Z ∀j ∈ {1, . . . , r}

C. D’Ambrosio (CNRS&École Polytechnique) Math Models & Methods for Hydro UC CWM3EO, Budapest 30 / 44



Multiple Objectives: new approach

With V. Cacchiani (thanks to STSM of COST Action TD1207)

Branch and Bound Algorithm
branching rule
dual bounds
fathoming rules
refinement procedure
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Branch and Bound Algorithm

Branching rule:
At each level j of the decision tree, we generate one child node for
each possible fixing of variable xj to value l , with l ∈ {ubj , . . . , lbj}

Dual bounds:
The lower bound at the root node is computed by solving p single
objective MINLP problems via a general-purpose MINLP solver.
At each node of the decision tree, the lower bound is computed by
solving p single objective NLP problems obtained by relaxing
integrality requirements and by taking into account the branching
decisions up to the current node.
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Fathoming rules

A node can be fathomed if:
The corresponding problem is infeasible
It is an integer feasible leaf node
Its lower bound is dominated by (at least) one of the solutions, say
x∗, of the current Pareto set, i.e., LBk ≥ fk (x∗) ∀k ∈ {1, . . . ,p}
Each single objective NLPk problem (k ∈ {1, . . . ,p}) is integer
feasible and all the p integer solutions coincide
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Refinement procedure

For each solution x∗ in the current Pareto set Y ∗ and for each objective
function fk̄ (k̄ ∈ {1, . . . ,p}), we perform the ε- constraint method with f̃k
set to fk (x∗).
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Starting Pareto set and solving leaf nodes

Since we consider convex problems, the solution of the leaf nodes can
generate all Pareto points by varying the weights (Censor 1977).
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Hydro UC: A discontinuous Pareto set

Consider just one period and fix each of the 3 configurations (turbine
on, pump on, both off): the Pareto set is the union of the three disjoint
sets.
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Characteristics of the instances

# T = number of time periods of one hour considered in the instance
T # vars # bin # constr
1 18 8 19
2 30 14 34
3 42 20 49
4 54 26 64
5 66 32 79
6 78 38 94
7 90 44 109
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Computational experiments: setting

AMPL environment
Intel Xeon 2.4 GHz with 8 GB Ram running Linux
SCIP to solve single objective MINLPs
Ipopt to solve single objective NLPs
Weighted Sum method to obtain a starting Pareto set (step 0.1)
Weighted Sum method to solve a leaf node (step 0.1)
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Comparison of the three branch-and-bound versions

Comparison of the three branch-and-bound versions:
noRF: no refinement
1RF: refinement procedure only executed at the end of the
resolution
RF: refinement procedure executed at each update of the Pareto
set
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Comparison

N solutions CPU time
T noRF 1RF RF noRF 1RF RF
1 4 4 4 1 1 1
2 11 11 11 3 3 3
3 35 35 30 12 12 15
4 61 61 49 43 43 57
5 108 108 79 150 150 229
6 179 179 120 534 534 891
7 257 257 134 1946 1946 3861

Table: N solutions and CPU time (in s) for the three versions of the
branch-and-bound
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Fathoming statistics

# T # nodes # dom # leaf
1 12 1 1
2 55 1 5
3 233 4 19
4 862 11 65
5 3056 26 211
6 10415 54 665
7 34185 175 1995

Table: Statistics on the total number of nodes, dominated nodes, and leaf
nodes
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Pareto sets of the three branch-and-bound versions

Figure: Pareto sets comparison for T = 3.
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Comparison with the Weighted Sum method

The Weighted Sum method:
was executed with a step of 0.001, i.e. executed for 1000 iterations
ended up in obtaining 27 solutions
solutions are characterized by a high revenue and a small final
reservoir

The branch-and-bound algorithm derives a more diverse Pareto set.
The RF solutions are characterized by solutions having revenue and
volume in wider ranges.
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Conclusions

Challenging problem from different aspects
Large-scale problem
Fast methods needed/online optimization
Combinatorial aspect
Nonlinearities
Multiple (conflicting) objectives

Lots of research to be done!
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C. D’Ambrosio (CNRS&École Polytechnique) Math Models & Methods for Hydro UC CWM3EO, Budapest 44 / 44


